Т.к 1)<D=<C
2)DE=CE
3)AC. пересекается BD=>(вертикальные <)
AED=BEC(по признаку = 2 сторон и угла между ними)
Угол BFM=180-68=112(односторонние углы)
угол FME= углу BFM=68(накрест лежащие углы)
угол MFE= углу AMF=112(накрест лежащие углы)
AMC=FMD=68(вертикальные)
CMD=AMF=112(вертикальные)
BFK=MFE=112(вертикальные)
BFM=EFK=68(вертикальные)
При пересечении двух прямых образуются четыре угла, притом среди них 2 пары вертикальных. То есть езли взять величину одного угла за #, а величину другого за &, то сумма всех углов равна #+&+#+&=360 или 2#+2&=360.
1. сумма 2 углов равна 98. Если бы это было 2 смежных угла, то их сумма равнялась бы 180° Следоватеьно, это сумма одгой из пар вертикальных углов. То есть мы выяснили градумную меру 2 углов. 98/2=49. Омталось найти градусную меру 2 других углов. 360-98=262 (градусная мера суммы другой пары вертикальных углов). Значит градустная мера каждого угла из этой пары равна 262/2=131
Ответ: 131 и 49
2. Разница 2 из них равняется 58. Так как вертикальные углы равны, то данная разница существует между смежными углами. Обозначим градусную меру меньшего из углов за х, а большего за х+58
х+х+58=180 --> 2х=180-58 --> 2х=122 --> х=61 (градусная мера меньшего из углов)
х+58=61+58=119
Ответ: 119 и 61
3. Все углы равны между собой. Сумма 4 углов равна 360° и эти углы равны, отсюда х+х+х+х=360 --> 4х=360 --> х=90
Ответ: 90
4. Сумма трёх из них равна 286 градусов. Сумма 4 углов раана 360°, следоаательно 286+х=360 --> х=360-286 --> х=74. Так как из 4 углов две пары вертикальных, то у найденного кгла х есть своя "пара". 74+74=148. значит сумма углов в другой паре равна 360-148=212. Значит градусная мера каждого из этих углов равна 212/2=106
Ответ: 106 и 74
Найдём площадь треугольника по формуле Герона :
S=√(p·(p-a)(p-b)(p-c)) , где р=(а+b+c)/2
р=(5+4+√17)/2=(9+√17)/2
S=√((9+√17)/2)(9+√17)/2-5))(9+√17)/2-4))(9+√17)/2-√17))=
=√((9+√17)/2)(√17-1)/2)(1+√17)/2)(9-√17)/2)=√((81+17)/4)(17-1)/4)=
=√(98·16)/16=7√2