Я получил замечание, за элементарное решение этой задачи:)))
Выглядело оно так
"Вообще-то косинус половины центрального угла этой хорды равен 1/2"
или как-то похоже. Я бы вставил точный текст, но тут нельзя :))
Поясню решение.
Центральный угол хорды вместе с ней образует равнобедренный треугольник, боковые стороны равны радиусу. Опушенная из центра окружности на хорду высота (она же медиана и биссектриса) равна половине радиуса. Это задано по условию. Следовательно, угол между этой высотой и боковой стороной (радиусом) имеет косинус, равный 1/2, то есть равен 60 градусам. Поэтому центральный угол, соответствующий хорде, равен 120 градусам. То есть хорда отсекает треть окружности. Собственно, задача уже решена, поскольку сторона равностороннего треугольника, вписанного в эту окружность, тоже отсекает от окружности ровно треть.
Всё это пояснение совершенно эквивалентно забаненой фразе. Я сожалею о своей ошибке, глубоко раскаиваюсь и обещаю впредь не совершать ничего подобного :))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Угол а пЯтьдесят четыре градуса. Дальше сам
Периметр (а*в)*2
54/2=27- это одна сторона и другая, у них отношени 1:2, значит 27/3=9 меньшая сторона, а большая 18. Всё. Стороны известны, значит 9*18=162:)
Sin150= sin(90+60)=sin (п\2+d)=cos60=1\2
ответ 1\2
АВ=√(-2-2)²+(6-0)²=√16+36=√52=2√13⇒R=√13
координаты центра х=(2-2)/2=0 у=(0+6)/2=3
(x-0)²=(y-3)²=13
x²+(y-3)²=13