Пусть А - начало координат.
Ось X - AB
Ось Y - AD
Ось Z - AA1
Координаты точек
B(1;0;0)
C1(1;1;1)
D(0;1;0)
A1(0;0;1)
D1(0;1;1)
B1(1;0;1)
Вектора
АD1(0;1;1) длина √2
A1B(1:0;-1) длина √2
DD1(0;0;1)
Косинус Угла между AD1 и A1B
1/√2/√2=1/2 угол 60 градусов.
Уравнение плоскости А1ВС1
ах+by+cz+d=0
Подставляем координаты точек
c+d=0
a+d=0
a+b+c+d=0
Пусть d= -1 тогда с=1 а=1 b= -1
x-y+z-1=0
Синус угла между DD1 и А1ВС1
1/√3=√3/3 угол arcsin(√3/3)
Уравнение плоскости АВС
z=0
Плоскость АВ1D1
ax+by+cz=0
Подставляем координаты точек
а+с=0
b+c=0
Пусть с= -1 тогда а=1 b=1
x+y-z=0
Косинус угла между искомыми плоскостями
1/√3=√3/3 угол arccos(√3/3)
Ответ:
Объяснение:
ME || BC, тр-к АВС подобен тр-ку АМЕ по двум углам (<A-общий, <M=<B соответст.), МЕ/ВС=АМ/АВ, МЕ/44=7/11, МЕ=7*44/11=28
Про трапецию не правильно ,ср линия равна полусумме оснований
.................................
По сути дан треугольник. Можно построить, например, среднюю линию треугольника, которая будет пересекать 2 стороны и параллельна третьей. Ну а делить отрезок пополам с помощью циркуля и линейки уже пора уметь.