(сверху формула по выч. радиуса)
Если подставить значения то получим что R=7,5
Данные углы являются центральными, так как они равны, значит равны и дуги МК=DC. так как равны дуги значит равны хорды их стягивающие.
Дано: сторона основания а = 3 см, угол α = 30°.
Находим высоту h основания:
h = a*cos30° = 3√3/2.
Проекция бокового ребра на основание равна (2/3)*h = (2/3)*(3√3/2) = √3.
Высота Н пирамиды равна:
Н = ((2/3)*h)*tgα = √3*(1/√3) = 1 см.
Площадь So основания равна
So = a²√3/4 = 3²√3/4 = 9√3/4 ≈ <span>
3,897114 см</span>²<span>.
Периметр основания Р = 3а = 3*3 = 9 см.
Находим апофему А, проекция которой на основание равна (1/3)h.
</span>(1/3)h = (1/3)*(3√3/2) = √3/2 см.<span>
A = </span>√(H² +( (1/3)h)²) = √(1² + (√3/2)²) = √(1 + (3/4)) = √7/2 ≈<span> <span>1,322876 см.
</span></span><span>Площадь Sбок боковой поверхности равна:
Sбок = (1/2)РА = (1/2)*9*(</span>√7/2) = 9√7/4 ≈ <span><span>5,95294.
Площадь S полной поверхности пирамиды равна:
S = So + Sбок = (</span></span>9√3/4) + (9√7/4) = (9/4)(√3 + √7) ≈ <span><span>9,198002.
Объём V пирамиды равен:
V = (1/3)So*H = (1/3)*</span></span>(9√3/4)*1 = (3√3/4) ≈ <span><span>1,299038 см</span></span>³.
Ответ:
∠АВD = 44°; ∠АDВ = 76°;
Объяснение:
Смотри прикреплённый рисунок.
∠АВD = α (накрест лежащие при АВ ║ CD и секущей BD)
∠АDВ = β (накрест лежащие при AD ║ BC и секущей BD)
По теореме синусов
α = arc sin 0.6928 ≈ 44°
β = 180° - (60° + 44°) = 76°
SF/EF=tgα
EF=SF/tgα=H/tgα
по теореме Пифагора
AF²=EF²+EA²
EF=EA
AF=(√2H)/tgα=R
S=πR²=(2πH²)/tg²α