Пропорция СЕ/ЕЕ₁=СД/ДД₁⇒ДД₁=ЕЕ₁*СД/СЕ=12*15/6=30 см
Если угол в равен 70 градусам
то остальные - 180 -70 =110
если треугольник равнобедренный , то угол А = углу С и = 110 в сумме
значит Угол А = 110 : 2 = 55
Угол С = 110 : 2= 55
<span>Ответ угол А = 55, Угол С = 55</span>
Диагональ основания параллепипеда корень(5^2+12^2)=корень(169)=13
треугольник образованный диагональю основания, высотой и диагональю паралеппипеда прямоугольный. один из его углов 45, значит он равнобедренный => катеты равны между собой, т.е. высота равна длине диагонали основания = 13 см
Пусть в трапеции АВСД основания ВС=а, АД=в, АС и ВД - диагонали, О - точка их пересечения, ВН - высота трапеции, М - точка пересечения высоты ВН и искомого отрезка КЛ.
По условию КЛ параллельна ВС, следовательно ΔАВД подобен ΔКВО, а ΔАВС подобен ΔАКО. Т.к. в подобных треугольниках высоты пропорциональны сторонам, на которые они опущены, то КО/АД=ВМ/ВН, КО/ВС=МН/ВН.
Отсюда КО/АД+КО/ВС=ВМ/ВН+МН/ВН
<span>КО*(ВС+АД)/АД*ВС=(ВМ+МН)/ВН, </span>
т.к. ВМ+МН=ВН, то
КО*(а+в)/ав=1
КО=ав/(а+в)
Аналогично, из подобия ΔДОЛ и ΔДВС, а также Δ ОСЛ и ΔАСД, находим ОЛ:
ОЛ=ав/(а+в)
<span>КЛ=КО+КЛ=ав/(а+в)+ав/(а+в)=2ав/(а+в)</span>