Треугольник , площадь которого нужно найти, - прямоугольный, так как ВА -проекция наклонной ОА - перпендикулярна АD.
Поэтому и ОА перпеникулярна АD.
Из прямоугольного треугольника АВО найдем АО.
Можно применить т. Пифагора, но кто помнит об египетском треугольнике, без вычилений знает, что ОА =10 см
Площадь треугольника <span> OAD равна половине произведения его катетов. </span>
<span>S Δ <span> OAD=10*6:2=30 см²</span></span>
Т.к. треугольник АВС - равнобедренный, то угол А равен углу С, соответственно, т.к. биссектриса делит угол пополам, то угол ОАС равен углу ОСА
если углы равны, то и стороны равны
значит по определению, треугольник АОС - равнобедренный
Точки K и N делят диагональ AC прямоугольника ABCD на равные три отрезка(рис 21.16)