Дана призма ABCDEFA1B1C1D1E1F1. В основании правильный шестиугольник со стороной 2.
Vпр = Sосн * h.
, где а - сторона основания.
Проведем высоту (h) из т А1 - АО.
Рассмотрим прямоугольный треугольник АОА1.
АА1- боковое ребро, равное 4. Угол наклона ребра к плоскости основания - это угол А1АО, равный 60 гр. Следовательно, угол АА1О=30 гр.
Катет, лежащий напротив угла в 30 гр, равен половине гипотенузы. Т.е. АО=2.
Найдем А1О по теореме Пифагора:
Если провести в параллелограмме диагонали ac и bd , то каждая из них разделит параллелограмм на два треугольника. Отрезки mn, np, pq и mq являются средними линиями в соответствующих тр-ках. Средние линии треугольников параллельны основаниям (диагоналям параллелограмма), значит mn║pq и np║mq.
Так как треугольники, разделённые диагональю равны (свойство параллелограмма), то и полученные параллельные отрезки равны, следовательно nmpq - параллелограмм.
Пусть треугольник будет АВС, высота- СН, высота проведенная к гипотинузе АВ, делит на два прямоугольных треугольника АСН и СНВ, суть в том, что там угол ВАС=углу ВСН и угол АВС=углу АСН, нужно посмотреть градусную меру известных и по ним постоить неизвестные