Теорема косинусов: a²=b²+c²-2bc*cosα, где a,b,c - стороны треугольника, α - угол между b и c.
NK² = NM²+MK²-2MK*MN*cos∠NMK
NK² = 36+100-120*cos120°
NK² = 136 + 120*sin30° = 136 + 60 = 196
NK = 14
NM² = NK²+MK²-2MK*NK*cos∠NKM
cos∠NKM = (MK²+NK²-MN²)/(2MK*NK)
cos∠NKM = (196+100-36)/(2*10*14) = 260/280 = 13/14
∠NKM = arccos 13/14
KM² = NK²+MN²-2MN*NK*cos∠MNK
cos∠MNK = (MN²+NK²-KM²)/(2MN*NK)
cos∠MNK = (36+196-100)/(2*6*14) = 132/168 = 11/14
∠MNK = arccos 11/14
Ac/a1c1=8/16=1/2-коэффициент подобия
тогда
ab/a1b1=1/2
ab=1/2*a1b1=12*1/2=6см
bc/b1c1=1/2
bc=1/2*b1c1=14*0.5=7см
Решение вложено.
Решение записано на чертеже и продублировано текстом