Прямоугольный треугольник имеет один угол = 90 °, а два других угла являются острыми.
Допустим, что меньший из этих двух острых уголов =Х °.
Поскольку по условию задачи сказано, что один из острых углов на 50% больше второго, значит второй угол в 2 раза больше первого (поскольку 50% величины это половина от 100%) и этот второй острый угол =2Х°<span>.
</span>Сума всех углов любого треугольника =180°
Значит сума углов нашего треугольника =180°
Выходит,
х+2х+90°=180°
3х=180°-90°
3х=90°
х=30° - величина первого острого угла.
Значит величина второго острого угла = 2Х°=2*30°=60°
<span>Ответ: острые угли прямоугольного треугольника равны 30° и 60°</span>
S=ПR^2=ПR81
R^2=81
R=√81 = 9
Мы знаем, во-первых, теорему Пифагора: a^2 + b^2 = c^2, где a,b - катеты, c - гипотенуза. В нашем случае, раз треугольник равнобедренный, то a=b и теорема примет вид:
a^2 + a^2 = c^2
2 * a^2 = c^2
Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид:
S = 1/2 * a * a = 1/2 * a^2
Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S
Отсюда, подставляя имеющееся значение:
c^2 = 4 * 50 = 200
c = корень из 200 = 2 * (корень из 10)
<span>Сначала находим координаты вектора АВ, получится (0,6 ; -3,5). Следовательно вектор АВ должен быть равен вектору DC, значит и координаты у них будут совпадать (0,6 ; -3,5). Пишем формулу нахождения вектора DC. Координата вершины D (-0,6 ; 1,1), потому что из координат C нужно вычесть координаты D, чтобы получились координаты вектора DC.</span>
Площадь любой грани этого тераэдра a^2*корень(3)/4 (площадь равностороннего треугольника). А сечение - это тоже равносторонний треугольник, стороны которого - средние линии граней АВС, ADC и ABD. Сторона в 2 раза меньше, значит площадь - в четыре.