<span>Пусть отрезки будут АВ=25 см с проекцией ВС и МК=30 см с проекцией КЕ. </span>
<em>Расстояние между параллельными плоскостями одинаково в любой точке и равно длине общего перпендикуляра между ними</em>.
<span>Тогда ∆ АВС и ∆ МКЕ прямоугольные с прямыми углами С и Е. </span>
Выразим по т.Пифагора АС из ∆ АВС
АС²=АВ²-ВС²
МЕ²=МК²-ЕК²
<span>АС=МЕ. </span>
<em>АВ²-ВС²=МК²-ЕК²</em>
Пусть ВС=х
625-х²=900-х²-22х-121 ⇒
-900+625+121= х²-х²-22х Проведя необходимые вычисления, получим
22х=154 ⇒ х=7
Из ∆ АВС по т.Пифагора <em>АС=24- </em>это расстояние между плоскостями.
Искомый угол АВС.
sin∠ABC=АС:АВ=24/25=0,96. Это синус угла 73°74'
!!! Сумма всех углов - 180°
На пересечении сторон(если их продлить) образуются смежные углы.
!!!!!!!!!!!!!!!!!!!!!!!!!!!
1) проводим линию BD,получается два равнобедренных треугольника и угол BCA=углу BAC = 69 градусов , угол DCA=углу DAC= 66
угол A=66+69=135
2) 180-90-23=67
3) cинус угла А это отношение BC к AB( BC/AB)
составляем отношение :
4/AB=25/100
AB=16
Всё просто. точка А лежит на прямой, заданной графиком у=х, т.к. её ордината равна абсциссе, а данная прямая является биссектрисой первой четверти, следовательно угол равен 90/2=45 градусов