Угол 2=240:2=120
Угол 3=180-120=60 (как смежные)
Высота, проведённая к основанию, в равнобедренном треугольнике является также и биссектрисой, и медианой.
Раз так вышло, что она биссектриса, то получается, что угол 120° она делит пополам. То есть 120° / 2 = 60.
Что ж, у нас получились 2 равных треугольника, рассмотрим правый треугольник.
Один из углов у него 90°, потому что высота. Второй угол у него 60°, потому что биссектриса. Отсюда можно найти третий его угол. Невообразимо сложными вычислениями ( 180 - ( 90 + 60 ) ) можно выяснить что третий угол будет 30°.
Так так, 30 градусов значит... Конечно же, все знают что против угла 30° лежит половина гипотенузы. А что у нас против 30° там? Посмотрим в задаче, ага... 12 см., значит гипотенуза 24 см.
А гипотенуза, в данном случае, как раз таки и есть боковая сторона треугольника.
Ответ: 24.
Стандартное доказательство теорем Чевы и Ван-Обеля такое. Через вершину A (все равно какую, это не принципиально) проводится прямая параллельно BC, прямые CC1 и BB1 продолжаются до пересечения с этой прямой в точках C2 и B2 соответственно.
Получается целая куча подобных треугольников, из которых получаются следующие пропорции.
Из подобия ΔAC1C2 и ΔBCC1
AC1/BC1 = AC2/BC; (1)
Из подобия ΔAB1B2 и ΔBCB1
AB1/CB1 = AB2/BC; (2)
Из подобия ΔAC2K и ΔA1CK
AC2/CA1 = AK/KA1; (3)
Из подобия ΔAB2K и ΔA1BK
AB2/BA1 = AK/KA1; (4)
Если два последних равенства (3) и (4) поделить друг на друга, получится
AC2/AB2 = CA1/BA1;
Из первых двух равенств (1) и (2) получается
(AC1/BC1)*(CB1/AB1) = AC2/AB2 = (как только что показано) = CA1/BA1;
Отсюда получается теорема Чевы
(AC1*BA1*CB1)/(AB1*CA1*BC1) = 1; (5)
то есть если AA1; BB1 и CC1 пересекаются в одной точке K, то выполнено соотношение (5). Но это еще не все, что можно получить.
Из (3) и (4) получается
AC2 = (AK/KA1)*CA1; AB2 = (AK/KA1)*BA1;
то есть B2C2 = (AK/KA1)*(CA1 + BA1) = (AK/KA1)*BC;
или B2C2/BC = AK/KA1;
Если сложить (1) и (2), получится
AC1/BC1 + AB1/CB1 = (AC2 + AB2)/BC = B2C2/BC;
получилась теорема Ван-Обеля
AK/KA1 = AC1/BC1 + AB1/CB1; (6)
Теперь решение задачи. Я перехожу от общепринятых обозначений к обозначениям на чертеже автора. Пусть N - точка пересечения CF и AB;
Из (5)
(AD/DC)*(CE/EB)*(BN/AN) = 1;
из (6)
AF/FE = AN/BN + AD/DС;
то есть AF/FE = (AD/DC)*(CE/EB) + AD/DC = (AD/DC)*(1 + CE/EB); что и требовалось.
по условию угол BDE= углу BAC=34 ⇒ соответственные углы при AC||DE секущая AB
отсюда угол DEF = углу EFC = 52 гр как накрест лежащие при AD||DE секущая EF
Вот ответ в фотографии .....................