Если по клеточкам строить, то всё должно красиво получиться
С-гипотенуза,b-катет.Тогда 2 катет пусть равен а и согласно теореме Пифагора равен √(с²-b²)
(√(c-b)+√(c+b))²/2+b=(c-b+2√(c²-b²)+c+b)/2+b=(2c+2√(c²-b²))/2+b=
=c+√(c²-b²)+b
Сделаем замену и тогда c+a+b=5
1) 17ⁿ - 1 = (17 - 1)(17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1) = 16( 17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1)
Т.к. один из множителей делится на 16, то и все выражение делится на 16.
2) 23²ⁿ+¹ + 1 = (23 + 1)(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1) = 24(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1).
Т.к. один из множителей делится на 24, то и все выражение делится на 24.
3) 13²ⁿ+¹ + 1 = (13 + 1)( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1) = 14( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1).
Т.к. один из множителей делится на 14, то и все выражение делится на 14.
Очевидно, что знаменателями этих двух дробей будут двучлены (у-4) и (у+4)...
должно получиться:
(Ау+В)/(у-4) + (Су+Д)/(у+4)
числитель: Ау^2+4Ау+Ву+4В+Су^2-4Су+Ду-4Д
из равенства числителей получим систему для коэффициентов:
{А+С=1 ---> А=1-С
{4А+В-4С+Д=5
{4В-4Д=-4 ---> В=Д-1
4-4С+Д-1-4С+Д=5
-8С+2Д=2
Д=1+4С
В=4С
А=1-С
если выбрать С=1;
А=0; В=4; Д=5;
можно проверить:
4 / (у-4) + (у+5) / (у+4) = (4у+16+у^2-4у+5у-20) / (у^2-16)...верно...
можно выбрать С=0;
А=1; В=0; Д=1;
можно проверить:
у / (у-4) + 1 / (у+4) = (у^2+4у+у-4) / (у^2-16)...тоже верно...