нууу... может быть, надо положить две ветевки, потом найти середину однойиз них, к этой середине приложить третью веревку, так, что её половина должна быть тоделена от всей "констрккции" получаем 5 частей
В треугольнике ABC угол C 90 градусов угол A 30 градусов AB равен 36 корень из 3 найти высоту CHДан прямоугольный треугольник АСВ.Угол А = 30 гр.Катет, лежащий напротив угла в 30 гр, равен половине гипотенузы.ВС = 1/2 АВВС=18 корней из 3 AC^2 = AB^2 - BC^2AC = 54 Расмотрим тругольник СНА - прямоугольный. Катет, лежащий напротив угла в 30 гр, равен половине гипотенузы.СН = 1/2 АССН = 27 <span>В прямоугольном треугольнике катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Значит СВ-18 корней из 3. А из теоремы Пифагора АС=54. А из треугольника АСН гипотенуза = 54, а катет против угла 30- <span>СН = 27.</span></span>
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
1. ∠АВЕ = ∠CDE по условию, углы при вершине Е равны как вертикальные, ⇒ ΔАВЕ подобен ΔCDE по двум углам.
2. ∠САЕ = ∠KEF по условию, ∠АСЕ = ∠EKF = 90°, ⇒ ΔСАЕ подобен ΔKEF по двум углам.
3. ∠ВАС = ∠ВРК по условию, угол В общий, ⇒ ΔВАС подобен ΔВРК по двум углам.
4. ΔАВС равнобедренный, угол при вершине 36°, значит углы при основании: (180° - 36°)/2 = 72°.
В ΔDAC ∠DCA = 72°, а ∠DAC = BAC/2 = 36°, ⇒ ΔABC подобен ΔDAC по двум углам.
5. ∠ВАС = ∠BDE по условию, угол при вершине В общий, ⇒ ΔВАС подобен ΔBDE по двум углам.
6. ∠АСВ = ∠DEB = 90°, угол при вершине В общий, ⇒ ΔАСВ подобен ΔDEB по двум углам.
Построй прямоугольный треугольник
Катеты по 2 и 3, а гипотенуза - 4