<span>если его меньшая диагональ равна стороне ромба
то ЭТОТ ромб состоит из двух равносторонних треугольников
в равностороннем треугольнике все углы = 60 град
тогда меньший угол ромба = 60
больший угол = 180-60=120 град
углы ромба 60;120;60;120</span>
Дополнительное построение - диагональ АС. Пусть диагонали ромба пересекаются в точке О. Тогда треугольник ВСО-прямоугольный (Диагонали ромба пересекаются под прямым углом). Сторона ВО будет равна 0,5 *ВД=5,5 (Диагонали ромба в точке ппересечения делятся пополам). Угол ВСО=30, так как диагонали ромба делят углы пополам. Сторона ВС=2*ВО=2*5,5=11 (в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы). Тогда периметр ромба 4*11=44
Решение :
А+<В+<С=180°
<С=180-90°-37=53
это первые задача
☝☝
9.
1. По свойству биссектрисы AK : KC = AB : BC, но AK : KC = 3 : 4 по условию, значит, AB : BC = 3 : 4.
2. Пусть x - 1 часть. Тогда AB = 3x, BC = 4x.
3. P = 2(AB+BC) = 2(3x+4x) = 14x = 42
x = 3 ⇒ AB = 9, BC = 12.
4. По теореме Пифагора AC = √(9²+12²) = √225 = 15
Ответ: AC = 15
10.
1. ΔAMK~ΔBKC по I признаку, т. к. ∠1 = ∠2, ∠3 = ∠4
2. MK : BK = AM : BC = AM : AB = 4 : 5.
3. Пусть на 1 часть приходится x. Тогда AM = 4x, AB = 5x, AB - AM = 5x - 4x = x = 2. Отсюда AB = BC = 10, AM = 8.
4. Д. п. - высота CH. ΔABM = ΔCHD, т. к. они прямоугольные, BM = CH как высоты, AB = CD по условию, отсюда AM = HD.
Тогда AD = AM + MH + HD = 2AM + BC = 16 + 10 = 26
5. Найдём BM. По Пифагоровой тройке 6:8:10 BM = 6 (AM = 8, AB = 10).
6. S = (a + b) / 2 * h = (10 + 26) / 2 * 6 = 108
Ответ: BC = 10, AD = 26, S = 108
Будет.По 1-му свойству или признаку параллелограмма