1.
а) (3x⁵-2x²)' = 15x⁴-4x
б) (2x⁵-5)' = 10x⁴
в)<u> 2 </u>- x² = (2x⁻³ - x²)' = -6x⁻⁴ - 2x =<u> -6 </u> - 2x
x³ x⁴
г) 32 ∛x² = 32 (x^(²/₃))' = 32 * (²/₃) x^(-¹/₃) = <u> 64 </u>
3 ∛x
2.
a) (x³+x)(x-x³)=x⁴+x²-x⁶-x⁴=(x²-x⁶)' = 2x-6x⁵
б)<u> x⁴-x² </u> = <u>x²(x²-1) </u>= <u>x² (x-1)(x+1)</u> = x²(x+1) = (x³+x²)' = 3x²+2x
x-1 x-1 x-1
X²+9x+14>0
x1+x2=-9 U x1*x2=14
x1=-7 U x2=-2
x∈(-∞;-7) U (-2;∞)
<span>а) f`(x) = (</span>x^4-3x^3+3x-1)` = (x^4)`+(-3x^3)`+(3x)`+(-1)` = 4x^3-9x^2+3
б) f`(x) = (3x^7+2x^6+6x^5-3x^4+6x^2-13x+5)` = (3x^7)`+(2x^6)`+(6x^5)`+(-3x^4)`+(6x^2)`+(-13x)`+5` = 21x^6+12x^5+30x^4-12x^3+12x-13