1. По св-ву угла в 30° в прямоугольном Δ (напротив него лежит катет, равны половине гипотенузы), получим:
ВА=2ВС
ВС=20
2. Представим ВС как х, а АВ тогда как 2х(по св-ву об угле в 30) и, пользуясь теоремой Пифагора, составим уравнение:
4х²=х²+(34√3)²
3х²=3468
х²=1156
х=34
ВС=34, тогда АВ=34·2=68
3. Найдем ∠В по теореме о сумме ∠Δ:∠В=180=90-60=30°.
И представим СА как х, а ВА как 2х (по теореме о угле в 30). По теореме Пифагора составим уравнение:
4х²=х²+(50√3)²
3х²=7500
х²=2500
х=50
СА=50
4. Рассмотрим ΔАВС: ∠А=30°⇒ВА=2ВС(по св-ву об угле в 30)⇒ВС=45√3.
По теореме Пифагора найдем СА:
СА²=(90√3)²-(45√3)²
СА²=24300-6075
СА²=18225
СА=135
Рассмотрим ΔСНА: ∠С=90°(по опр. высоты), ∠А=30°⇒СА=2СН
СН=67.5
5. Рассмотрим ΔАВС и высоту СН. ΔАВС - равносторонний⇒СН - и высота, и медиана, и биссектриса(по сву-ву мед.). АН=НВ(по опр. мед.)⇒АН=23√3
Рассмотрим ΔАНС: он прямоугл., так как СН - высота. По теореме Пифагора найдем СН:
СН²=СА²-АН²
СН²=(46√3)²-(23√3)²
СН²=6348-1587
СН²=4761
СН=69
Пусть треугольники ABC и A1B1C1 такие, что AB=A1B1, AC=A1C1, BC=B1C1. Требуется доказать, что треугольники равны.
Допустим, что треугольники не равны. Тогда ∠ A ≠ ∠ A1, ∠ B ≠ ∠ B1, ∠ C ≠ ∠ C1 одновременно. Иначе треугольники были бы равны по первому признаку.
Пусть треугольник A1B1C2 – треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой A1B1.
Пусть D – середина отрезка С1С2. треугольники A1C1C2 и B1C1C2 равнобедренные с общим основанием С1С2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой С1С2. Прямые A1D и B1D не совпадают, так как точки A1, B1, D не лежат на одной прямой. Но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.
<h2><u><em>[tex]x^{2} \sqrt{x} \pi \neq \</em></u></h2>