Функция y=f(x) возрастает на интервале X, если для любых х₁;x₂∈Х, таких, что х₂>x₁ выполняется неравенство f(x₂)>f(x₁) , что означает: большему значению аргумента соответствует большее значение функции.
Если функция определена и непрерывна в концах интервала возрастания или убывания (a;b), то есть при x=a и x=b, то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X.
1) на отрезке [1;4] функция у=х² возрастает
2) на интервале (2;5) функция у=х² возрастает
3)на промежутке x> 3 функция у=х² возрастает
4) неверно, что на отрезке [-3;4] функция у=х² возрастает
АВ= 10 , так как синус= отношение противолежащего катета к гипотенузе. 4/10 => АВ гипотенуза= 10 .
14-x=6x-3*(x+7); 14-x=6x-3x-21; -x-6x+3x= -21-14; -4x= -35; x=(-35)/(-4)=8 3/4.