<span>Условие должно быть таким: Из точки А к данной плоскости альфа проведены перпендикуляр АА1 и две наклонные АВ и АС.
СА1=4, угол АВА1=30°, угол АСА1=60°, а угол между наклонными 90°.
</span><span>Найти расстояние между основаниями наклонных.
Решение.
Из прямоугольного треугольника АСА1:
tgC=AA1/A1C (отношение противолежащего катета к прилежащему). Тогда АА1=А1С*tg60° = 4√3. АС=√(АА1²+А1С²)=√(48+16)=8. (Пифагор)
Из </span><span>прямоугольного треугольника АВА1:
АВ=2*АА1 = 8√3 (АА1 - катет против угла 30° и равен половине гипотенузы АВ).
</span><span>Из <span>прямоугольного треугольника АВС (<ВАС=90° - дано): ВС=√(АВ²+АС²)=√(64+192)=16.
Ответ: расстояние ВС между основаниями наклонных равно 16.</span></span>
Элементарно.
Сумма углов четырехугольника равна 360. Сумму двух из них знаем. Два других тоже равны.
360-70=2х
х=145
А=В=35
С=D=145
Сначала ужно написать уравнение прямой, проходящей через точки А и В. Найти середину отрезка АВ. Через эту точку провести прямую, перепендикулярную АВ.
Все точки этой прямой будут находится на равном расстоянии от точек А и В.
1) Напишем уравнение прямой, проходящей чнрез точки А и В;
у=к*х+в;
2=к*4+в;
в=2-4к (1);
7=к*6+в;
в=7-6к (2);
2-4к=7-6к;
2к=5;
к=2,5;
в=7-6*2,5=-8;
у=2,5х-8;
угловой коэффициент равен к=2,5;
2) координаты точки середины отрезка АВ равны ((4+6)/2; (2+7)/2)=(5;4,5);
3) угловые коэффициенты перпендикулярных прямых обратны по величине и противоположны по знаку. Угловой коэффициент искомой прямой равен к1=-1/к=-1/2,5=-0,4;
Уравнение прямой проходящей через точку (5;4,5) перпендикулярно к прямой у=2,5х-8:
4,5=5*(-0,4)+в;
в=4,5+2=6,5;
у=-0,4х+6,5;
0,4х+у-6,5=0;
<span>Если КВ в два раза меньше КС, то угол КСВ = 30 градусов (катет, который лежит против угла зо градусов равен половине гипотенузы). Так как СК биссектриса угла С , то угол С равен 60 градусов. Тогда угол ВАС = 30 градусов (сумма острых углов треугольника равна 90 градусов). Значит треугольник АКС равнобедренный (угол СКА=углу АСК = 30 градусов). Значит, АК=КС. </span>
<span>Пусть КВ=х, КС=КА=2х, АВ=2х+6, </span>
<span>АВ=АК+КВ </span>
<span>2х+6=2х+х </span>
<span>х=6
</span>КВ = 6 cм
<span>АВ=18 см. </span>