У=kx+b
<span>А(4;6) В(-4;0)
</span>
{4k + b = 6
{-4k + b = 0
2b = 6
b = 3
4k + b = 6
4k + 3 = 6
4k = 6 - 3
4k = 3
k = 3/4 = 0.75
уравнение: у = 0.75х + 3
1. По теореме синусов:
a : sin 60° = b : sin 45° = 2R
a = 2R · sin 60° = 2 · 10 · √3/2 = 10√3 дм
b = 2R · sin 45° = 2 · 10 · √2/2 = 10√2 дм
2. По теореме косинусов:
b² = a² + c² - 2ac·cos B
b² ≈ 49 + 9 - 2 · 7 · 3 · 0,0349 ≈ 58 - 1,4658 ≈ 56,5342
b ≈ 7,5
По теореме синусов:
с : sin C = b : sin B
sin C ≈ 3 ·sin 88° / 7,5 ≈ 3 · 0,9994 / 7,5 ≈ 0,3998
∠C ≈ 24°
∠A = 180° - (∠B + ∠C) ≈ 180° - 88° - 24° ≈ 68°
3. В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон:
AC² + BD² = 2(AB² + AD²)
AC = 40 м, BD = 32 м,
1600 + 1024 = 2(400 + AD²)
2624 = 2(400 + AD²)
AD² = 1312 - 400 = 912
AD ≈ 30,2 м
Диагонали параллелограмма точкой пересечения делятся пополам. По теореме косинусов из треугольника АОВ:
cosα = (ОА² + OB² - AB²) / (2·OA·OB)
cosα = (400 + 256 - 400) / (2 · 20 · 16) = 256 / 640 = 0,4
Внутренний угол при вершине В равен 180-146=34 градуса.
Т.к. AC=BC, треугольник равнобедренный, следовательно угол В равен углу А.
Угол С = 180-34*2=112 градусов.
Центральный угол измеряется дугой, на которую опирается, а вписанный измеряется половиной дуги, на которую опирается. Так что центральный угол = 80, а вписанный 40