Основание пирамиды (это равносторонний треугольник АВС) вписано в окружность радиуса r с центром О₁:r = a/(2*cos30°) = 6/(2*(√3/2)) = 6/√3 = 2√3.Высота пирамиды SО₁ равна H:Н = (√(AS² - (AО₁)²) = √(4² - (2√3)²) = √(16 -12) = √4 = 2.Теперь рассмотрим осевое сечение шара радиусом R и пирамиды:R² = r² + (R-H)² = r² + R² - 2RH + H².После сокращения на R² получаем:R = (r² + H²)/2H = ((2√3)² + 2²)/(2*2) = (12+4)/4 = 4.
Ответ:
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону.
Угол ВНС прямой, значит ВН это перпендикуляр к АС
Грань АДС <span>правильной треугольной пирамиды - равнобедренный треугольник.
Его площадь равна: S = a</span>²/(4tg(α/2)).
Так как заданная <span>площадь сечения пирамиды плоскостью, проходит через середину ребра BC и параллельна плоскости DAC, то в рёбрах АДВ и СДВ линии сечения параллельны рёбрам АД и ДС - то есть получаем подобный треугольник, площадь которого пропорциональна квадрату коэффициента подобия.
Из условии следует, что этот коэффициент равен 1/2.
Тогда площадь заданного сечения в 4 раза меньше АДС.
Ответ: площадь сечения равна:
</span>S = a²/(16tg(α/2)).
V= S осн. х высота
S осн.=1/2x13x13xsin30=1/2x13x13x1/2 =42,5
V= 42,5x12=512
немножко не то было, теперь верно