Cos4x-sin2x=0
решение уравнения.корни на отрезке не могу пока найти.
cos^2(2x)-sin^2(2x)-sin(2x)=0
1-sin^2(2x)-sin^2(2x)-sin^2(2x)-sin(2x)=0
-2sin^2(2x)-sin(2x)+1=0 sin2x=t
-2t^2-t+1=0
D=1+8=9 корень из D =3
t=(1+3)/-4=-1
t=(1-3)/-4=1/2
sin2x=-1 sin2x=1/2
2x= -п/2 + 2пk 1.2x=п/6+2пk
х= -п/4+пk х=п/12+2пk
2.2x=5п/6+2пk
х=5п/12+пk
Никак!
(х^2)^2-(x^5)^2=(x^2-x^5)(x^2+x^5) или x^4(1-x^6)
А) ас+с-с=ас
б) 2b-2-2=2b-4
в) m+m²-m+1=m²+1
г) k+3-k=3
нужно построить в одной системе координат графики функций у = х2 и
у = 2х + 3 . Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х1 = -1, х2 = 3.