Средняя линия = (основание1 + основание2)/2
итого 12 = (5+x)/2
5+x = 24
x=19
S(AOC) = 1/2 AO*OC* Sin<AOC,
S (BOD) =1/2 BO*OD*Sin<DOA , углы АОС и DОА равны ( вертикальные ) . значит синусы их тоже равны , по условию ОС = 2 ОD, тогда S( FOC ) / S(BOD ) = 2 . S ( BOD ) = 16 /2 = 8.
Ответы 2 и 3 правильные.Это треугольники которые равные по сторонам и углу между ними
Если угол АОС равен 80 градусов, то угол В, как вписанный и равный половине центрального угла АОС,
равен 40 градусов.
Сумма углов<span> А + С</span>
180-40=140 градусов.
Пусть х = коэффициент отношения углов А и С
Тогда 3х:4х=140
Отсюда 7х=140
х=20 градусов.
Угол С=3*20=60 градусов
Угол А =4*20<span>=80 градусов.</span>
Рассмотрим треугольник АВС - он р/б, углы при основании равны, а сумма всех углов 180*. Мы знаем, что угол при основании в 2 раза больше , чем угол напротив основания.
Пусть х угол В , а углы А и С по 2х.
х+2х+2х=180*
5х=180*
х=180/5
х=36*(угол В)
2х=36*2=72*(углы А и С)
Углы, на которые делит биссектриса угол А, равны 36*(она делит его пополам)
Рассмотрим треугольники АСД и АДВ - нам в них известно в каждом по два угла.
ΔАСД
∠ДАС =36* , ∠АСД=72*
Сумма всех углов в треугольнике 180*.
∠АДС=180-36-72=72*
Если в треугольнике есть два равных угла, то он р/б (∠АСД=72*=∠АДС)
Рассмотрим треугольник АДВ.
Мы уже нашли два равных угла по 36*
В и ДАВ =36*