ВАС=ДАС
ВА=АД
Значит: ВС=ДС потому что они вертикальны друг другу
Если треугольник равнобедренный, то
1. Углы при основании равны.
2. Биссектриса, проведенная к основанию, является медианой
3. и высотой
Доказательство:
Проведем биссектрису ВН.
АВ = ВС так как треугольник равнобедренный,
∠АВН = ∠СВН, так как ВН - биссектриса,
ВН - общая сторона для треугольников АВН и СВН, значит
ΔАВН = ΔСВН по двум сторонам и углу между ними.
Из равенства треугольников следует:
1) ∠ВАС = ∠ВСА,
2) АН = НС ⇒ ВН - медиана,
3) ∠АНВ = ∠СНВ, а так как они смежные, их сумма 180°, значит
∠АНВ = ∠СНВ = 90°. Значит, ВН - высота.
<em>Если соединить точки Д и В, то угол ДВС опирается на диаметр СД, поэтому равен 90°, тогда угол ВАС, как и угол СДВ, вписанный и опирается на одну и туже дугу СВ, поэтому ∠ВАС=∠СДВ.</em>
<em>Но из ΔСДВ угол СДВ равен 90°-55°=35°, т.к. сумма острых углов в прямоугольном треугольнике равна 90°.</em>
<em>Значит, искомый угол ВАС равен </em><em>35°</em>
Ещо углы BAD и BAC равны а угол BAD=25 то BAC=тоже 25
Катет лежащий напротив угла 30 гр равен половине гипотенузы