Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1 считая от вершины
Так как MN проходит через точку пересечения медиан и параллельна AC, то ΔMBN пропорционален ΔABC с коэффициентом 2/3
Отсюда MN = 2/3 AC = 2/3 * 9 = 6
BN/NC = 2:1
Отношение площадей относится как квадрат коэффициента пропорциональности, таким образом SΔABC : SΔMBN = (3/2)^2 = 9/4
При пересечении двух параллельных прямых соответственные углы равны.
При пересечении двух параллельных прямых сумма односторонних углов равна 180°.
1) АС=(0-(-2);9-(-1))=(2;10)
2) ВД=(-4-1;1-2)=(-5;-1)
1) В равностороннем треугольнике высота (к любой стороне) является биссектрисой и медианой; высоты, биссектрисы, медианы (AN, BH, CM) пересекаются в одной точке (O).
∠OMA=∠ONC=90
∠MAO=∠NCO=∠BAC/2=60/30=30 (в равностороннем треугольнике все углы равны 60, высоты AN и CM являются биссектрисами)
∠AOM=∠NOC=90-30=60 (сумма острых углов прямоугольного треугольника равна 90)
AM=CN=AB/2 (AB=BC, высоты AN и CM являются медианами)
△AOM=△NOC (по стороне и прилежащим углам)
3) ∠AKE +2∠BKH =180 <=> ∠AKE=180-2*32=116 (∠AKB - развернутый угол, KH – биссектриса ∠BKE)
∠AKE=∠ABC=116 (соответственные углы при КЕ||ВС)
∠ABC+ 2∠BAC =180 (в равнобедренном треугольнике углы при основании равны, сумма углов треугольника 180)
2∠BKH=180-∠AKE=180-∠ABC=2∠BAC
∠BKH=∠BAC=∠ACB=32
<span>13 см, 19 см, 8.5 см
</span><span>28 см, 19 см, 16 см
</span><span>26 см, 17 см, 20 см
</span><span>19.5 см, 33.5 см, 47.5 см
</span><span>7.5 см, 15 см, 13.5 см</span>