3) (x+1)^3 + (x-1)^3 - 2x^3=12
Преобразуем Левую часть:
x^3+3x^2+3x+1+x^3-3x^2+3x-1-2x^3=6x (Подобные слагаемые взаимоуничтожились)
Далее уравнение принимает вид: 6x=12 и решается как простейшее линейное уравнение с одной неизвестной:
6x=12 |:6
x=2
Ответ: x=2.
4)(1+y)^3 +(1-y)^3 - 6y^2= 3y-1
Перенесём все слагаемые с неизвестной в одну часть уравнения(левую часть), а затем преобразуем её:
1+3y+3y^2+y^3+1-3y+3y^2-y^3-6y^2-3y = 2-3y
Вернёмся к исходному выражению:
2-3y=-1
Перенесём все слагаемые без переменной в правую часть:
-3y=1
Разделим обе части на (-3):
-3y=1 |:(-3)
y=-1/3
Ответ: y = -1/3.
24х^6 - 8x^3y - 9x^4y + 3x^2y^2
{x=5–y
{2(5–y)–3y=5
10–2y–3y=5
–5y=–5
y=1
x=5–1=4
Ответ: (4;1)