3=2 как вертикальные, 2=180-угол 1=180-64=116 смежные
<em>В правильной треугольной пирамиде DABC боковые ребра DA,DB и DC взаимно перпендикулярны. Вершина D является центром сферы , на поверхности которой лежат точки A,B, и C. <u>Найдите площадь сферы,</u> если ее высота равна 2√3 см.
</em>-------
<span>Понятно, что 2√3 см - высота пирамиды, т.к. у сферы нет высоты.
-------------
</span><span>Боковые ребра пирамиды взаимно перпендикулярны, вершины ∆ АВС лежат на поверхности сферы, D- ее центр, следовательно, <em>все ребра данной пирамиды <u>равны радиусу R сферы</u></em>, и боковые грани - равнобедренные прямоугольные треугольники/
</span> Боковые ребра пирамиды равны, ⇒ равны их проекции на плоскость треугольника АВС, ⇒ основание О высоты DО лежит в центре описанной вокруг ∆ АВС окружности.
Пусть стороны основания равны 2а.
Высота DH боковой грани делит ее на два равнобедренных прямоугольных треугольника, является её медианой и равна половине стороны основания. DH=a ⇒
R сферы =AD
<em>АD</em> = DС= <em>a√2</em> как гипотенуза равнобедренного прямоугольного треугольника DHC.<span>
<em>AO</em>=<em>2a /√3</em> как радиус описанной вокруг ∆ АВС окружности.
</span><span><em>AD²</em>=OD²+AO²
(a√2)²=(2√3)²+(2a/√3)²
</span><span>2a²=12+(4a²/3)
</span><span>6a²=36+4a²
</span><span>2a²=36
</span><em>AD²</em>=36=<em>R²</em>
Sсферы=4πR²
<span>S=4*36π=144π см<span>²</span></span>
1)Рассмотрим треуг.BKC.BK в квадрате=BC в кв.+BK в кв. 2)Пусть AB=BC=CD=DA=x. 3)Рассмотрим треуг.AKC.KC в кв=AK в кв.-AC в кв.=34-18=16.Значит KC=4. 4)Рассмотрим треуг.ACD.AC в кв=ADв кв.-DC в кв..Значит 18=x в кв.+x в кв..18=2x в кв.Значит x =3.
5)Подставим всё в первую формулу:BK в кв.=9=16=25,=>BK=5
Ответ:BK=5
Решение во вложении..............................