Пусть данный ромб будет АВСD, а четырехугольник, вершинами которого являются середины его сторон, KLMN.
Ромб диагоналями делится на треугольники:
АВС, СDА, АВD, DBC,
Т.к. K, L, M, N - середины сторон этих треугольников, то
KL =MN=AC/2,
KN=LM=BD/2
Площадь ромба равна половине произведения его диагоналей, ⇒
S=d×D:2 (d и D- меньшая и большая диагональ ромба).
d×D:2=48
Так как диагонали ромба пересекаются под прямым углом, а стороны KLMN параллельны им, то KLMN- прямоугольник.
Площадь прямоугольника равна произведению его сторон:
S KLMN=KL×MN
S KLMN=(AC/2,)×(BD/2 )=AC×BD/4⇒
S KLMN=48/2=24см²
Диагонали ромба взаимно перпендикулярны и являются биссектрисами его углов.
ΔАОВ: ∠АОВ = 90°, ∠АВО - ∠ВАО = 30°
но ∠АВО + ∠ВАО = 90° т.к. сумма острых углов прямоугольного треугольника равна 90°.
Получаем ∠АВО = (90° + 30°) /2 = 60°, значит ∠ВАО = 90° - 60° = 30°.
В ромбе ∠А = ∠С = 2ВАО = 60°
∠В = ∠D = 2∠АВО = 120°
А)1/2+√2/2>1
(1+√2)/2>1
1+√2>2
1+√2-2>0
-1+√2>0
-1>-√2/*(-1)
1<√2/*(√2)
√2<2.Если извлечь из √2 число, то получится меньше 2, тогда неравенство верное
Соединим центр окружности О с точками А и С. Полученный четырехугольник ВАОС- ромб, т.к. его диагонали ВО и АС пересекаются под прямым углом и делятся в точке пересечения пополам.Меньшая диагональ ромба равна радиусу окружности. Обозначим вторую диагональ 2х. По теореме об отрезках пересекающихся хорд получим
Эта диагональ делит наш ромб на два равных равнобедренных треугольника. Рассмотрим один из этих треугольников АОС. Используя теорему косинусов найдем косинус угла АОС.
Угол АОС- центральный, а угол АDС - соответствующий ему вписанный, поэтому он равен половине центрального АОС, т.е. угол АDС=60 градусов.Углы ВАD и ВСD равны и равны 90 градусов, потому что они опираются на диаметр окружности. Таким образом углы четыврехугольника равны : угол В=120, угол D =60, угол А и угол С по 90. Так как центральные углы АОС, АОD и СОD равны и образуют вместе 360 градусов, то каждый из них равен 120 градусов. зная это определим градусную меру дуг. Дуга АВ = дуге ВС = 60 градусов. Дуга АD= дуге СD= 120 градусов.
Параллелограмм АВСД, АВ=10, АД=15, диагонали в параллелограмме в точке пересечения О делятся пополам, АО=ОС. ВО=ОД ,периметрАОД =АО+ОД+АД=
=АО+ОД+15, периметрАОВ=АО+ВО(ОД)+АВ=АО+ОД+10
периметрАОД - периметрАОВ = АО+ОД+15 - (АО + ОД+10) = 5