По неравеству треугольника, любая сторона меньша за сумму двух его других сторон
a<b+c;
b<a+c
c<a+b;
Отсюда
a<b+c;
a+a<a+b+c
2a<a+b+c;
b<a+c;
b+b<a+c+b;
2b<a+b+c;
c<a+b;
c+c<a+b+c;
2c<a+b+c;
Доказано
Треугольник АВС - равнобедренный (АВ = ВС), значит ∠ВАС = (180° - ∠В)/2 = 60°.
Треугольник АDC - равнобедренный (AD = DC), значит ∠DAC = (180° - ∠D)/2 = 35°.
<span>∠A = ∠BAC + ∠DAC = 60° + 35° = 95°.</span>
Свойства прямоугольника
Противоположные стороны прямоугольника равны.
Все углы прямоугольника уровне.
Диагонали прямоугольника равны.
Диагонали прямоугольника пересекаются и точкой пересечения делятся пополам.
Диагонали прямоугольника делят его на две равные треугольники.
<span>В прямоугольника сумма углов, прилегающих к одной стороне, равна 180 °.
</span>
<span><span>
Сумма углов треугольника равна 180°:Внешний угол равен сумме двух внутренних углов, не смежных с ним, и больше любого внутреннего, с ним не смежного:Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол:</span><span><span>Средней линией треугольника называется отрезок, который соединяет середины двух его сторон.<span>Средняя линия треугольника параллельна одной из его сторон и равна её половине.</span></span></span></span>