H₁=S/a=60/15=4см
h₂=S/a=60/6=10см
Ответ: 4см;10см
Так как треугольник правильный, то точка пересечения медиан, биссектрис и высот одна и та же. То есть точка пересечения биссектрис - центр вписанной окружности. Центр пересечения серединных перпендикуляров - это медианы и высоты треугольника в одном. Значит центры окружностей совпадают. Теперь по свойству медиан, которые пересекаются в одной точке. От вершины к центру пересечения и от центра пересечения до основания они делятся в соотношении 2 к одному. Радиус описанной окружности как раз от вершины треугольника до его центра, а радиус вписанной окружности от центра пересечения медиан до основания медианы. Значит 2:2=1 м - длина радиуса вписанной окружности
1) Нужно построить прямоугольный треугольник с катетами 4 и 3. Острый угол, прилежащий к катету длиной 3, будет иметь тангенс, равный 4/3.
2) Гипотенуза треугольника равна
см.
Меньший угол лет против меньшего катета.
Его синус равен 8/17, косинус равен 15/17, тангенс равен 8/15.
ABCDE пирамида.Е вершина пирамиды.
ABCD прямоугольник лежащий в основании
AB=CD=6, BC=AD=8; находим AC: по теореме Пифагора 6^2+8^2=100 => AC=10
т. О пересечение диагоналей прямоугольника находим OD=10/2=5
ЕО высота пирамиды.и находим его по теореме Пифагора EO^2=ED^2-DO^2 ==>
EO^2=13^2-5^2=144 ==> EO=12 см