<span>Опустить высоту ВН.
В прямоугольном треугольнике АВН
гипотенуза АВ = 13,
катет АН = AD - BC =(9 + R) - (4 + R) = 5
катет AH = 5
катет ВН = 2R и это же высота найдём его по теореме Пифагора
ВН</span>²<span> = (АВ)</span>²<span> – (АН)</span>²
<span>ВН = √(13</span>²<span> - 5</span>²<span>) = </span>√(169 - 25) = √144<span> </span> = 12
Отсюда R = 12 : 2 = 6
ВС = 6 + 4 = 10
AD = 9 + 6 = 15
S = (BC + AD) * BH/2
S = (10 + 15) * 12/2 = 25 * 6 = 150
Ответ S = 150
У ромба все стороны равны, тогда они по 15.
ad=15, dh=12, найдём катет по обратной формуле пифагора.
ah^2=15^2-12^2
ah^2=225-144
ah^2=81
ah=9
Ответ: На 4 треугольника.
Объяснение:
Соединив одну вершину выпуклого шестиугольники с остальными, мы проводим диагонали. <em>Из одной вершины многоугольника можно повести n-3 отрезка</em> ( диагоналей), где n - количество сторон ( вершин). т.к. выбранная вершина уже соединена с соседними сторонами многоугольника, и ее саму нельзя соединить с самой собой).
Следовательно, можно провести 6-3=3 отрезка, которые разделят выпуклый шестиугольник ( неважно, правильный или произвольный) на 4 треугольника. (<em>см. рисунок</em>)
Номер 1
ответы 1,2,3,5
номер 2
мы находим угол 3 по углу 1 накрест лежащие значит угол 3=48 потом мы из 180 отнимаем 48 это будет 132 а угол 3 и угол 2 накрест лежащие значит угол 2 равен 132
номер 3
доказательство
треугольник АНД=БДМ
1)Д-общая
2)уголМДБ=углуАДН
3)АН=БМ