Решение во вкладке, если что-то непонятно, спрашивайте.
1.
Сумма острых углов прямоугольного треугольника равна 90°.
ΔСЕЕ₁: ∠СЕ₁Е = 90°, ∠СЕЕ₁ = 32°, ⇒
∠ЕСЕ₁ = 90° - 32° = 58°.
Высоты треугольника пересекаются в одной точке, поэтому отрезок DD₁, проходящий через точку О, будет являться высотой треугольника АВС.
ΔСDD₁: ∠CD₁D = 90°, ∠D₁CD = 58°, ⇒
∠CDD₁ = 90° - 58° = 32°.
∠CDO = 32°.
2.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины, тогда
ОВ₁ = 1/3 ВВ₁ = 1/3 · 15 = 5 см
ОВ = 2/3 ВВ₁ = 2/3 · 15 = 10 см
ОС₁ = 1/3 СС₁ = 1/3 · 18 = 6 см
ОС = 2/3 СС₁ = 2/3 · 18 = 12 см
ΔВОС: ∠ВОС = 90°, по теореме Пифагора
ВС = √(ОС² + ОВ²) = √(144 + 100) = √244 = 2√61 см
ΔВОС₁: ∠ВОС₁ = 90°, по теореме Пифагора
ВС₁ = √(ОВ² + ОС₁²) = √(100 + 36) = √136 = 2√34 см
АВ = 2·ВС₁ = 4√34 см
ΔСОВ₁: ∠СОВ₁ = 90°, по теореме Пифагора
СВ₁ = √(ОС² + ОВ₁²) = √(144 + 25) = √169 = 13 см
СА = 2·СВ₁ = 26 см
Рabc = АВ + ВС + АС = 4√34 + 2√61 + 26 = 2(2√34 + √61 + 13) см
Наша планета, впрочем как и большинство других, далеко неоднородна, а представлена в виде «пирога» — расположенных друг над другом слоев. Согласно тем данным, которые получены при изучении внутреннего строения планеты, ученые смогли рассчитать приблизительную мощность каждого:
ядро — суммарный радиус жидкой и твердой частей составляет 3500 км.;
мантия — толщина слоя не более 2900 км.;
кора — варьируется в пределах 10-120 км.
Таким образом, получается, что самый мощный — мантия — до 85% общей массы Земли.
Ответ:
Объяснение:
Для решения данной задачи давайте рассуждать логично-
НЕ МОЖЕТ быть правильный многоугольник из данного, если из одну вершину мы соединим , например , с пятой вершиной по часовой стрелке, а против часовой - с шестой. Тогда стороны не тбудут равными. Это дает нам ключ к решению задачи.
Значит, первый многоугольник получается, если мы соединим вершины через одну, т.е. каждую вторую.
1)Получится 60/2=30-угольник.
2)Потом 60/3=20 угольник. И так далее, берем делители числа 60
3) 60/4=15
4) 60/5=12
5) 60/6=10
6) 60/10=6
7) 60/12=5
8) 60/15=4
9) 60/20=3
Итого - 9 многоугольников
Вот, думаю ты поймешь мой почерк