6 * 8 = 48 см2 - площадь прямоугольника.
4 * 4 = 16 см2 - площадь вырезанной части.
48 - 16 = 32 см2 - площадь оставшейся части.
Ответ: 32 см2 - площадь оставшейся части.
Удачи)
В прикрепленном файле показан "вид сверху" на прямоугольник MNBA. Треугольник АВС наклонен (вершина С БЛИЖЕ к нам, чем плоскость прямоугольника) Размеры взяты в скобки, потому что соответствуют наклонным отрезкам. Рядом показан вид сбоку, на треугольник ВСМ.
Задачка упрощается благодаря тому, что 5,12,13 - пифагоровы числа, то есть АВС - прямоугольный тр-к, то есть проекция С1 лежит на BN (я сразу так и нарисовал). Нам надо найти угол СВМ в треугольнике СВМ, это и будет искомый двугранный угол (плоскость СВМ перпендикулярна АВ, потому что АВС - прямоугольный треугольник, а МВ - по условию, MNBA - прямоугольник).
Но СВМ - тоже прямоугольный треугольник (стороны 9, 12 и 15, опять пифагоровы числа). Поэтому, сразу ответ -
arcsin(3/5)
Если бы С1 не попадала на сторону ВМ, и если бы СМВ тоже не был бы прямоугольным, задача усложнялась бы, но не так, чтобы очень :) - всё сводилось бы к применению теоремы косинусов в двух треугольниках с заданными сторонами.
Решение получилось какое-то большое)))
основные мысли две:
площади подобных фигур относятся как квадрат коэффициента подобия)))
площади треугольников с равными высотами относятся как их основания)))
и повторить их нужно трижды...
если через выбранные точки провести прямые, параллельные сторонам данного треугольника, то они отсекают от данного треугольника подобные ему треугольники)))
и осталось рассмотреть оставшиеся "кусочки"
т.е. по сути даны разные отношения на сторонах и нужно выразить их
через что-то одно ---через площадь S...
При построении получается, что BD-высота. угол ABD=30град, угол DBC=15 град, из свойств прямоуг треуг мы знаем, что катет лежащ против угла 30 град равен половине гиппотенузы. АВ=6 см из теоремы пифагора находим
BD. Рассмотрим треуг
DBC.
BD мы нашли,
угол DBC=15 град нам известен. cosугла
DBC=
BD/ BС из этого находим ВС.