sin3x-4sinxcosx=0
sin(2x+x)-4sinxcosx=0
sin2xcosx+sinxcos2x-4sinxcox=0
2sinxcos^2(x)+sinx(cos^2(x)-sin^2(x))-4sinxcosx=0
3sinxcos^2(x)-sin^3(x)-4sinxcosx=0
sinx(3cos^2(x)-sin^2(x)-4cosx)=0
sinx(3cos^2(x)-1+cos^2(x)-4cosx)=0
sinx(4cos^2(x)-4cosx-1)=0
sinx=0 4cos^2(x)-4cosx-1=0
x=pi*k 4t^2-4t-1=0 (t=cosx)
t=(1+sqrt(2))/2 или t=(1-sqrt(2))/2 (Первый корень отпадает, так как он больше единицы)
cosx=(1-sqrt(2))/2
x=+- arccos((1-sqrt(2))/2) +2pi*k
Ответ: x=pi*k, x=arccos((1-sqrt(2))/2) +2pi*k, x=-arccos((1-sqrt(2))/2) +2pi*k, k принадлежит Z
Х²-х-2<0
х²-х-2=0
D=1+8=9
√d=3
x¹=(1+3)/2=2
x2=(1-3)/2= -1
методом интервалов:
Хє(-1;2)
Третий график большим получается.
2^7*a^11*b^7*(-5)^3*x^7=-16000(a^11)(b^7)(x^7)