1) ∠1 является односторонним углом с ∠2 при парал. прям. и сек. ⇒ сумма односторонних углов равна 180°(по св-ву). Так как ∠1 в 4 раза меньше ∠2, а сумма их равна 180, мы можем составить уравнение, приняв за х ∠1. Получим:
х+4х=180
5х=180
х=36
∠1=36°
∠2=144°
∠2=∠3(по св-ву вертикальных углов) ⇒ ∠3=144°.
2) ∠1 и ∠2 - соответственные при парал. прям. и сек. ⇒ ∠1=∠2(по св-ву)
А так как сумма их равна 100°, можно сказать, что ∠1=∠2=50°
∠3 смежен с ∠1 ⇒ сумма их равна 180(по св-ву смеж. углов) ⇒ ∠3=180°-50°=130°.
3) ∠2 равен вертикальному с ним ∠(он без названия, пусть будет ∠4)(по св-ву). Рассмотрим ∠1 и ∠4. Они односторонние при парал. прям. и сек.
⇒ их сумма равна 180. А так как ∠2=∠4 и он больше ∠1 на 90°, то можно снова составить уравнение, где х=∠1:
х+х+90=180
2Х=90
х=45
Тогда: ∠1=45°
∠4=∠2=45+90=135°
∠1=∠3(по св-ву верт. углов) ⇒ ∠3=45°
9) Допустим, что одна часть равна х, тогда АD=2х, СD =5х.
Рассмотрим треугольник АВD. ВD^2= AB^2-AD^2,
BD^2=289-4x^2;
рассмотрим треугольник BCD. BD^2=BC^2-CD^2,
BD^2=625-25x^2.
289-4x^2=625-25x^2;
21x^2=336;
x^2=16;
x=4.
AD=2·4=8.
CD=5·4=20.
AC=AD+CD= 8+20=28.
BD^2=289-4·4^2=289-64=225.
BD=15.
Площадь треугольника равна:
S=0,5·ВD·АС=0,5·15·28=210 (кв. ед.)
Ответ: 210 кв. ед.
10) Допустим, АМ=СМ=х, АС=2х.
Рассмотрим треугольник АВС.
ВС^2=AB^2-AC^2=100-4x^2.
Рассмотрим треугольник BCM.
BC^2=BM^2-CM^2=73-x^2.
100-4x^2=73-x^2;
3x^2=27;
x^2=9;
x=3.
AC=2·3=6.
Из треугольника АВС определим ВС:
ВС^2=AB^2-AC^2=100-36=64.
BC= 8.
Вычислим площадь треугольника АВС.
S=0,5·АС·ВС=0,5·6·8=24 (кв. ед)
Ответ: 24 кв. ед.
Площадь треугольника АВС находим по формуле Герона
р=(15+37+44)/2=48
кв. см
S (Δ ABC)=AC·BK/2 BK=2S/AC=528/44=12 (см)
Из прямоугольного треугольника DBK по теореме Пифагора
DK²=9²+12²=81+144=225
DK=(15 см)
Ответ. 15 см
Угол АВМ = углу СВМ = а
угол ВСЕ = углу АСЕ = в
180 = 26 + а + а + в + в тогда а + в = 77 градусов
угол ВОС = 180 - а - в = 103 градуса
угол ЕОМ = углу ВОС = 103 градуса (вертикальные)
Составим уравнение:
х+х+(х-3)=20,4
х+х+х=20,4+3
3х=23,4
х=23,4/3
х=7,8