Треугольники АЅТ и ВЅТ равны по двум равным углам, прилегающим к общей стороне ЅТ ( <u><em>2-ой признак</em></u><em> равенства</em>), следовательно, стороны <em>АЅ=ВЅ</em>. В ∆ АЅК и ∆ ВЅК равны две стороны (АЅ=ВЅ и ЅК общая) и заключенные между ними углы. ∆ АЅК=∆ ВЅК<em>по </em><u><em>1-ому признаку</em></u><em> равенства,</em> из чего следует <em>ВК</em><em>=</em><em>АК</em>
1) (180-80):2 = 50
2) 132 и каждый угол по моему должно получиться
1. 82
2. 72
3. 23
Скалярное произведение векторов a и b = произведение модулей этих векторов на косинус угла между ними. a*b*Cos60=5*4*1/2=10.
Сделаем рисунок, обозначим вершины трапеции АВСD.
Так как отношение ВС:АВ =4:3, а треугольник АВС - прямоугольный, отношение всех сторон этого треугольника равно 3:4:5 - он <u><em>египетский. </em></u>
Это можно проверить по т.Пифагора.
Тогда одна часть этого отношения равна 10:5=2,
и АВ=3·2=6
ВС=4·2=8
Рассмотим треугольник АСD
Он подобен треугольнику АВС, т.к. углы ВСА=САD как накрестлежащие при параллельных прямых и секущей.
Отсюда отношение сторон в нем также 3:4:5, и катет АС относится к гипотенузе АD как 4:5
10:АD=4:5
4 АD=50
АD=12,5
Высотой трапеции является АВ=6, т.к. она по условию перпендикулярна основаниям.
<em><u>Площадь трапеции равна произведению высоты на полусумму оснований.</u></em>
<em />Так как требуется <em>найти удвоенную</em> площадь, умножать будем высоту на сумму оснований.
2S=АВ*(ВС+АД)=6·20,5=123
Треугольник прямоугольный (определяется по Пифагору). Центр описанной окружности - это середина гипотенузы АВ.
Далее надо использовать свойство биссектрисы.
Пусть отрезок AL = x.
x/24 = (40 - x)/32, сократим знаменатели на 8: x/3 = (40 - x)/4.
4х = 120 - 3х, 7х = 120, х = 120/7.
Ответ: OL = 20 - (120/7) = (140 - 120)/7 = 20/7.
Если умножить на 7, то ответ 20.