Дано: ΔАВС, ВД - высота, АВ=4√6 см, СД=3 см, ∠АВД=30°.
Найти ВС.
Рассмотрим треугольник АВД - прямоугольный по свойству высоты,
АД=1\2 АВ как катет, лежащий против угла 30°, АД=2√6 см.
ВД²=АВ²-АД²=(4√6)²-(2√6)²=96-24=72
ВД=√72
ВС²=ВД²+СД²=(√72)²+9=72+9=81
ВС=√81=9
Ответ: 9 см.
<span>1проведем отрезки BM и CM, они равны по условию=>треугольник BCM равнобедренный следовательно угол MBC=углу MCBкак углы при основании</span>
<span>2</span>
<span>Угол В равен углу М так как трапеция равнобедренная, но по пункту 1 MBC=MCB следовательно угол ABM=DCM</span>
<span>3</span>
<span>AB=CD. Так как трапеция равнобедренная</span>
<span>BM=MC по условию</span>
<span>Угол ABM=DCM по пункту 2</span>
<span>Из всего следует что треугольник ABM равен треугольнику DCM по 2 сторонам и углу между ними следовательно AM=MD</span>
<span>что и требовалось доказать</span>
Отрезок соединяющий середины двух сторон этой фигуры!
средняя линия треугольника параллельна третьей стороне и равна её половине.
при проведении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
средняя линия отсекает треугольник, который подобен данному, а его площадь равна одной четвертой площади исходного треугольника.
Каак же ты так:D
Пусть одна из сторон a, а вторая b. Можно решать систему, можно сразу заменить и уравнение. Думаю, вспомнил и мое решение понятно)