1) Опустим высоты трапеции на большее основание. Большее основание разбилось на три отрезка: х, 6, х.
2) Рассмотрим один из образовавшихся прямоугольных треугольников. Один острый угол его равен 135-90=45 градусов, значит второй острый угол его равен 90-45=45 градусов, т.е. получили равнобедренный прямоугольный тр-к с катетами х и высота h. Т.е. x=h.
3) По условию большее основание в 3 раза больше высоты, значит x+6+x=3h,
h+6+h=3h, 2h+6=3h, h=6. А нижнее основание тогда равно 3*6=18 (см).
4) Площадь трапеции равна произведению полусуммы оснований на высоту:
S=((6+18)/2)*6=12*6=72 (см^2)
уголС =180-20-25=135
Радиус описанной окружности = АВ / 2 x sinC = 12 / 2 x корень2/2 = 12 / корень2 = 6 х корень2
1)
Эту задачу можна решить построением графиков.
На координатной плоскости строим коло и прямую y+5=0 (рис).
С графика точки пересечения имеют координаты: (-3;-5) и (3;-5).
2) Решаем задачу используя, що такое тангес кута и основное тригонометрическое тождество. (рис.)