Треугольники равны по
Углу О( общий)
ОС=ОD(условие)
Угол D=углу С(условие)
Следовательно OB=OA(как соответственные элементы)
Будем считать, что задание должно было выглядеть так:
1) У правильной четырехугольной пирамиды высота 17 см, сторона основания 8 см. Найти боковое ребро пирамиды.
2) Основание пирамиды - равнобедренный треугольник, длина сторон которого 40 см, 25 см и 25 см. Высота пирамиды 8 см, при этом высота проходит через вершину угла, который находится напротив длинной стороны. Найти площадь боковой поверхности пирамиды и её объем.
1) У правильной четырёх угольной пирамиды в основании квадрат.
Сторона а = 8 см.
Проекции боковых рёбер L - это половины диагоналей d основания.
(d/2) = 8√2/2 = 4√2 см.
Тогда боковое ребро пирамиды L = √(17² + (4√2)² = √(289 + 32) = √321 ≈
17,916473.
2) Высота основания h = √(25² - 20²) = 15 см.
Высота наклонной грани hн = √(8² + 15²) = √289 = 17 см.
Sбок = (1/2)*(8*25 + 8*25 + 40*17) = 540 см².
Площадь основания Sо = (1/2)/40*15 = 300 см².
Объём пирамиды V = (1/3)*300*8 = 800 cм³.
Вообще-то приложен рисунок 2!
Точка Д не принадлежит ли грани ВВ1С1С .
Прямая ВF пресечет плоскости граней ADD1 (переднюю), BCC1 (заднюю), ABC (нижнюю), A1B1C1 (верхнюю).
Прямая СF пересечет все плоскости граней куба.
cosβ = (прилежащий) / (гипотенуза) = BC / AB ⇒
3 / 5 = 3 / AB ⇒
AB = 5
CB² = AB · HB ⇒
9 = 5 · HB ⇒
HB = 9 / 5 = 1.8