3.Высота из вершины малого основания в равнобедренной трапеции делит большое основание на отрезки, меньший из которых равен полуразности оснований(то есть (a - b)/2, где а и b - большое и малое основания)откуда больший равен полусумме оснований(потому что а - (a - b)/2 = (a + b)/2)<span>То есть больший отрезок равен средней линии. </span> треугольник, образованный этим отрезком, высотой и диагональю - это прямоугольный треугольник с углом 45 градусов (так задано).То есть он равнобедренный.<span>То есть средняя линяя равна высоте. цифры тогда сами подставите)</span>
Так как С, Н и Р - <em>середины сторон ∆ АВК</em>, стороны треугольника СНР являются <u>средними линиями треугольника АВК</u> и равны половинам длин сторон исходного, т.е. стороны треугольников пропорциональны, и ∆ СНР <u>подобен</u> ∆ АВК коэффициентом подобия <em>k=1/2</em>. <em>Отношение периметров подобных треугольников равно коэффициенту их подобия.</em> Р(СНР):Р(АВК)=1/2. Р(СНР)=(12+9+8):2= 29:2=14,5 (ед. длины)
Решение задачи во вложенном файле.