Построим произвольный треугольник АВС, такой где АС=15 см, и
проведем медианы АМ, ВК, СN.
Точкой пересечения данных медиан является точка О.
Медианы делятся этой точкой на две части в отношении 2:1,
считая от вершины (основное свойство медиан).
Построим отрезок ДЕ, удовлетворяющий условиям данной задачи
(т. Е. ДЕ проходит через точку О и параллелен АС).
Так как АС||ДЕ то треугольники АВС и ЕДВ подобны (прямая
параллельная стороне треугольника отсекает от него подобный треугольник).
В подобных треугольниках соответствующие стороны и линии (высоты,
медианы, биссектрисы) пропорциональны. Значит
ВО/ВК=ДЕ/АС,
Но по основному свойству медиан:
ВО/ВК=2/3. Значит
ДЕ/АС=2/3
ДЕ/15=2/3
ДЕ=15*2/3
ДЕ=10 см