<span><em>В равнобедренном треугольнике основание равно 10 см, а боковая сторона равна 13 см.</em>
<span><em><u>Найти радиус</u> окружности, вписанной в этот треугольник.</em></span>
--------
Формула радиуса вписанной в треугольник окружности:
r=S/p,
где -S- площадь треугольника, р - его полупериметр,
S=a•h:2.h- высота треугольника, а - сторона, к которой она проведена. </span>
<span><em>Высота равнобедренного треугольника, опущенная на основание - еще медиана и биссектриса</em>.
Она делит треугольник на два <u>равных прямоугольных</u>, в которых гипотенуза - боковая сторона, а катетами являются высота h и половина основания.
По т.Пифагора
h=√(13</span>²-5²)=12 cм<span>
</span>S=12•10:2=60 cм²
р=Р:2=(13+13+10):2=18<span> см
</span>r=60:18=10:3=3¹/₃ см
------
Радиус вписанной в равнобедренный треугольник окружности можно найти из подобия треугольников, на которые радиус, проведенный в точку касания, делит половину исходного, т.е. прямоугольный треугольник.
Пусть дан треугольник АВС, ВН его высота.
Высоту найдем как описано выше.
Проведем<u> радиус ОМ</u> в точку касания на ВС.
∆ ВНС и ВМО подобны - оба прямоугольные и имеют общий острый угол при В.
По свойству касательных из одной точки СМ=СН=5. ⇒
ВМ=13-5=8
Из подобия следует отношение:
ВМ:ВН=ОМ:СН
8:12=ОМ:5 ⇒
ОМ=40:12=<span>3¹/₃ см
</span>r=3¹/₃ см
Из подобия треугольников, соответствующие углы равны, значит <Р=<Н=31°. Т.к. МН:СР=1:3, то НК:ТР=1:3, отсюда получаем пропорцию
11/РТ=1/3решая получаем РТ=33. А площади подобных треугольников относятся как квадраты линейных размеров, значит площадь СРТ относится к площади МНК как 9:1
во втором 1. 2,5 см 2. 2,5
Диагональ ромба - биссектриса углов. Углы ромба 60 и 120 гр. Получается, что малая диагональ делит ромб на 2 равносторонних треугольника (у них все углы по 60 градусов. Площадь равностороннего треугольника и ответ см на вложении.
Ао=ов
со=оd
значит треугольники соа и дов равны
ов=оа=27 , 110-(27+33)= 50см вд=са
ответ:са=50