Угол АВО = углу СОD = 40° (вертикальные)
угол АОD = углу ВОС = 180°-40° = 140°
По теореме Менелая.
В треугольнике АСН с секущей МВ имеем:
(АМ/МС)*(СК/КН)*(НВ/ВА)=1. Отсюда
1*(4/1)*(НВ/ВА)=1. НВ/ВА=1/4.
В треугольнике АВМ с секущей НС имеем:
(АН/НВ)*(ВК/КМ)*(МС/СА)=1.
Учитывая, что (НВ/ВА)=1/4, имеем АН/НВ=3/1.
Отсюда (3/1)*(ВК/КМ)*(1/2)=1.
ВК/КМ=2/3. Но ВМ=4, значит ВК=4*(2/5)=8/5.
Тогда из прямоугольного треугольника НВК
по Пифагору ВН=√(ВК²-КН²) или
ВН=√(64/25-1)=√(39/25), а ВС из треугольника СНВ
ВС=√(ВН²+НС²) или ВС=√(39/25+25)=√664/5=2√166/5.
Ответ: ВС=0,4√166 ≈ 5,2.
<span>гол равен 180(n-2)/n=9*18=162</span>
Теорема Фалеса:
Если параллельные прямые отсекают на одной стороне угла равные отрезки, то они отсекают равные отрезки и на другой его стороне.
(Параллельные прямые отсекают на секущих пропорциональные отрезки.)
высота равнобедренного треугольника,проведенная к основанию, является и биссектрисой и медианой: BD=DA