<em>1. Найдем координаты векторов АВ, АС, АД, везде, где речь идет о векторах, над ними ставьте черту или стрелку. Но у меня к сожалению нет такой возможности. Чтобы найти их координаты, надо от координат конца вычесть координаты начала вектора, АВ(-2-3; 1-2;3-4); АВ(-5;-1;-1)</em>
<em>АС(-1;-4;-5); АД(-1;3;-) Объем найдем, как 1/6 от модуля детерминанта или определителя, где в первой строке поставим координаты вектора АВ, во второй АС , в третьей АД, и вычислим этот определитель по правилу треугольника. </em>
<em> v=(1/6)*║-5 -1 -1 ║</em>
<em> ║-1 -4 -5║ </em>
<em> ║ -1 3 1║, здесь линии должны быть непрерывными, как в модуле, а раскрывается этот определитель так</em>
<em>(1/6)*(модуль от (20-5+3+4-1-75))= модуль минус 54/6=9, т.е. </em><em>объем равен </em>
<em>9 ед. куб.</em><em> Из формулы объема пирамиды, известного из курса средней школы, v=s*h/3, находим высоту h=3v/s=3*9/15.3=9/5.1=</em><em>30/17</em><em>≈</em><em>1.76</em>