Задача сильно облегчается тем, что высота треугольника в основании призмы, перпендикулярная основанию 24, это вообще самый маленький отрезок из всех, которые соединяют любую вершину треугольника с точкой противоположной стороны. Дело в том, что все такие отрезки, выходящие из концов основания, заведомо больше 13, поскольку угол при вершине - тупой. Высота к основанию равна 5 (там египетский треугольник со сторонами 5,12,13), и это кратчайший из возможных таких отрезков.
Поэтому высота призмы равна 5.
Площадь одного основания равна 5*24/2 = 60,
площадь всех боковых граней (24 + 13 +13)*5 = 250
Общая 2*60+250 = 370
<span>1. На данном луче от его начала отложить отрезок равный данному.</span>
ВАС=90
Т.к. угол ВАС делится на 3 равные части, то угол ВДА= углу ДАЕ= углу ЕАС=30.
Треугольник ВДА подобен ВАС по двум углам: ДВА=АВС, угол ВДА=ВАС=90 ,
=> угол ВСА= ДАВ=30
=>треугольник АЕС= равнобедренный , АЕ=АС
Треугольник ВДА= ЕДА по двум углам и стороне, ДА- общая, угол ВДА=ЕДА, угол ВАД=ЕАД.
=>ВД=ДЕ
обозначим ДЕ за х, тогда ВД=х, ЕС=2х, ЕА=2х
S треугольника ЕДА =(1/2)*ЕД*ДА=(1/2)*х*2х*cos30
(х^2)*(sqrt{3}/2)=2/sqrt{3}
х=2/sqrt{3}
(1/2)АС=АЕ*cos30=(4/sqrt{3})*(sqrt{3}/2)=2
=> AC=4
ВА=ВС*cos60=4x*(1/2)=(8/sqrt{3})*(1/2)=4/sqrt{3}
S треугольника АВС =(1/2)*АВ*АС=8/sqrt{3}
р (полупериметр)=(6+2sqrt{3})/sqrt{3}
r=S/p
r=8/(6+2sqrt{3})=4/(3+sqrt{3})
S круга=п*r^2=(16п)/((3+sqrt{3})^2)
82-20-20=42
42:2=21 см вторая сторона
диагональ равна √20²+21²=√400+441=√841=29
У прямокутному трикутнику АВС (кут С = 90°) кут В= 30°. Катет, що лежить навпроти кута, який дорівнює 30 градусів дорівнює половині гіпотенузи. є одне «АЛЕ» чому коло гіпотенузи пише 8, а в умові 12