1)а — данная прямая.
Возьмем на прямой а точки А, В, С. При движении они перейдут в точки А1, В1, Q соответственно, причем АВ=А1В1, ВС=ВА и АС=А1C1. Необходимо доказать, что А1, В1, С1 лежат на одной прямой.
A1C1=A1B1+B1C1. Такое равенство верно, если все три точки — лежат на одной прямой; иначе по неравенству треугольника А1C1 < А1В1+В1С1. В силу произвольного выбора точек А, В и С доказательство справедливо для любых других точек, таким образом, движение переводит прямую в прямую.
Дано: ΔАВС - прямоугольный, ∠С=90°, ∠В=69°, ∠А=21°, СН - высота, СМ - медиана. Найти ∠МСН.
Решение: в прямоугольном треугольнике медиана, проведенная из вершины прямого угла к гипотенузе, равна половине гипотенузы. Отсюда ΔАМС - равнобедренный, АМ=МС, тогда ∠АСМ=∠САМ=21°.
ΔСВН - прямоугольный, ∠ВСН=90-69=21°.
∠МСН=∠АСВ-∠АСМ-∠ВСН=90-21-21=48°.
Ответ: 48°.
BC=DE; MCA=KEA вот и весь ответ
Выражается так:BA+AD+(-CD)
1. ΔABD=ΔDBC (т.к. ∠ABD=∠BCA, ∠BAD=∠DAC, AD - общая)
2. ΔABD=ΔBDC (т.к. ∠BDC=∠BDA, ∠BAD=∠BCD, BD - общая)
3. ΔBAE=ΔCDE (т.к. ∠ABE=∠ECD, AE=ED, ∠BEA=∠CED)
4. AB=8 (т.к. ∠BAC=30°⇒2BC=AB)
5. ∠A=180°-90°-60°=30°⇒BC=5
6. ∠A=180°-90°-45°=45°⇒BC=CA=6
7. ∠CAD=∠ACD⇒CD=AD; ∠DCB=∠DBC⇒CD=DB⇒AB=16
8. ∠AEB=180°-60°=120°⇒∠ABE=180°-30°-120°=30°⇒∠ABE=∠AEB⇒BE=AE=14