Трапеция АВСД: АВ=СД=4, АД=10,5, ∠ВАД=∠СДА=60°.
Опустим высоту ВН на основание АД. В прямоугольном ΔАВН∠АВН=180-90-60=30°, значит катет АН=АВ/2=4/2=2.
В равнобедренной трапеции АН=(АД-ВС)/2, откуда ВС=АД-2АН=10,5-2*2=6,5 дм.
Ответ: 6,5 дм
1. 8, т.к. трекгольник равносторонний<br />4. 360-(143+77)=140. А х=140/2=70<br />5. 360-(180+124)=56. х=56*2=28
Пусть sin B = 0.75, тогда по теореме синусов
10/sin B = 15/sin C
sin C = 15*sin B/10 = 15*0.75/10=1.125
.
Но значение синуса угла не может быть больше единицы, поэтому ответ: не может.
По свойству параллельных плоскостей:
<em>Если две параллельные плоскости пересекаются третьей, то линии их пересечения параллельны</em>. ⇒
FQ-линия пересечения искомой плоскости с верхним основанием призмы. FQ||AC
По условию СF:FD1=2:1 ⇒
СD1:FD1=3:1
<span>FD1=6:3=2 </span>
<span>∆ FD1Q~∆ ADC – прямоугольные, их стороны параллельны. </span>
AC=AD:sin45°=6√2
Из подобия ∆ FD1Q~∆ ADC следует ∠D1FQ=DCA=45°
FQ=FD1:sin45°=2√2
CFQA - равнобедренная трапеция. FP⊥AC, FP- высота
<span><em>Высота <u>равнобедренной</u> трапеции, проведенная из тупого угла, делит большее основание на отрезки, <u>меньший</u> из которых <u>равен </u></em><em><u>полуразности оснований</u></em><em>, больший – их полусумме.</em> </span>
СР=(АС-FQ):2=2√2
FC²=CF²+CC1*=17
<span>Из прямоугольного ∆ СFP по т.Пияагора </span>
FP=√(CF²-CP²)=√(17-8)=3
<u>S</u><u>(</u><em><u>CFQA</u></em><u>)</u>=FP•(FQ+AC):2=3•(2√2+6√2):2=<em>12√2</em> (ед площади)