Дано: Решение:
KMNP-параллелограмм т.к. KMNP-параллелограмм,то его
KE-биссектриса противолежащие стороны равны,то есть
ME=10 см KM=NP,а MN=KP.∠K=∠N,и ∠M=∠P. т.к. ME
P KMNP=52 см биссектриса,то ∠K делится на 2 равных
Найти: угла ∠1=∠2,∠3(∠E) равен ∠1 как KP-? накрест лежащие (при секущей ME).
Доказать: ME=KM=10 см,NP=KM=10 см.
ΔKME-равнобедренный Пусть EN=x см,тогда MN=10 см+ x см
Составим уравнение:
10+10+10+x+10+x=52
40+2x=52
2x=52-40
2x=12
x=12:2 NE=6 см,значит MN=6 см+10 см=16 см,KP=MN=16 см
Ответ:KP=16 см
Обозначим сторону квадрата в основании пирамиды за х.
Площадь основания So = x².
Высота Н = √((6√3)²-(x√2/2)²) = √(108-(x²/2)) = √(216-x²)/√2.
Объём пирамиды V = (1/3)SoH = (1/3)x²*√(216-x²)/√2 = x²*<span>√(216-x²)/3√2.
</span>Находим производную функции объёма:
Для нахождения экстремума приравняем производную нулю. Для этого достаточно приравнять числитель нулю.
-х(х²-144) = 0,
х = 0 (это значение отбрасываем, объём Vmin = 0).
х²-144 = 0
х = +-√144 = +-12.
Vmax = (1/3)*12²*√(108-(144/2)) = (1/3)*144*√36 = 144*6/3 = 288 куб.ед.
По теореме Фалеса: <span>если какая-нибудь точка </span>A<span> лежит на окружности диаметра </span>BC<span> (за исключением самих точек </span>B<span> и </span>C), то △ABC<span> представляет собой прямоугольный треугольник с прямым углом </span>A<span>. ( в нашем случае это угол В)
180-90-32=58 градусов-угол А</span>