Диагонали ромба взаимно перпендикулярны и являются биссектрисами его углов.
ΔАОВ: ∠АОВ = 90°, ∠АВО - ∠ВАО = 30°
но ∠АВО + ∠ВАО = 90° т.к. сумма острых углов прямоугольного треугольника равна 90°.
Получаем ∠АВО = (90° + 30°) /2 = 60°, значит ∠ВАО = 90° - 60° = 30°.
В ромбе ∠А = ∠С = 2ВАО = 60°
∠В = ∠D = 2∠АВО = 120°
Если Вы правильно записали задание, то
Внешний угол тр-ка равен 180 гр-внутренний
Внешний А = 180-60 = 120 гр
Внешний В = 180-20 = 160гр
2. Сумма углов тр-ка равна 180 гр, значит
Угол с = 180-60-20 = 100 гр
Внешний С = 180-100 = 80 гр.
Ответ внешние углы равны - 120, 160, 80 гр соответсвенно.
Удачи!
Ответ:
2. 336.
4. 64.
Объяснение:
2) ABCD - прямоугольник => BC = AD = 28 см ; AC = BD, AO = OC = BO = OD =>
треугольник AOB равнобедренный, AD - основание.
OH - высота (по условию) => OH - медиана (по теореме о высоте, проведенной из вершины равнобедренного треугольника) => AH = HB.
AO = OC, AH = HD => OH - средняя линия треугольника ADC => OH = 1/2 * DC =>
DC = 6 * 2 = 12 см.
Площадь ABCD = AD * DC = 28 * 12 = 336 см квадратных.
Ответ : 336 см квадратных.
4) Достроим прямую AB и точку M до прямоугольника KBCM.
ABCD - квадрат => AB = BC = DC = AD = MD.
Площадь треугольника MBC = 1/2 * MC * BC.
MC = 2 * AB, BC = AB => Площадь треугольника MBC = 1/2 * 2 * AB * AB = AB^2 (AB в квадрате).
64 = AB^2;
AB = (корень из 64)
AB = 8 см.
Площадь квадрата ABCD = AB^2.
Площадь квадрата ABCD = 8 * 8 = 64 см квадратных.
Ответ : 64 см квадратных.
Преведём диагональ, по т. Пифагора
Тогда радиус описанной окружности
Длина окружности
Ответ:
а какой номер та надо решить первый там решённый чтоле