На тебе чертёж , который тебе был нужен
Обозначим треугольник АВС. АВ=4, ВС=5. О центр окружности на АС. Соединим точки О и В. Из точки О проведём перпендикуляры (радиусы) ОМ на АВ и ОК на ВС. (ОК на продолжении АВ). Площадь треугольника АВС равна S авс=1/2*АВ*ВС*sin30=1/2*4*5*1/2=5. Площадь этого треугольника равна сумме площадей треугольников АВО и СВО. То есть Sавс=1/2АВ*ОМ+1/2ВС*ОК, или 5=1/2*4*R+1/2*5*R. 5=4,5R. То есть R=10/9.
7.если одна боковая сторона 10 см то и другая тоже 10 см.
по формуле Геррона найдем площадь:
P=10+10+16=36(периметр)
p=36÷2=18(полупериметр)
ОТВЕТ:S=48 cм
AO=CO, ∠AOM=∠COT=90°
∠MAO=∠TCO (нактерст лежащие при параллельных основаниях трапеции)
△AOM=△COT (по стороне и прилежащим к ней углам)
OM=OT
Диагонали ATCM перпендикулярны и точкой пересечения делятся пополам, ATCM - ромб.
В ромб можно вписать окружность (так как суммы его противоположных сторон равны). Центр вписанной окружности ромба - точка пересечения диагоналей (так как диагонали являются биссектрисами его углов). Радиус вписанной окружности - перпендикуляр из центра на сторону (OH⊥AT).
AO=AC/2=16/2=8
△AOT - египетский треугольник (3:4:5), множитель 2:
OT=3*2=6 (AO=4*2; AT=5*2)
Высота из прямого угла делит треугольник на подобные друг другу и исходному.
△OHT~△AOT, k=OT/AT=0,6
OH=AO*k =8*0,6 =4,8
------------------------------------------------------------------------------------------------------------
Диагонали четырехугольника точкой пересечения делятся пополам - признак параллелограмма. Диагонали параллелограмма перпендикулярны - признак ромба.
h=SO=LO=30, Soc=(1/2)*NL*KM=1800(cm^2), V=(1/3)*Soc*h, V=(1/3)*1800*30=18000(cm^3)=18(дм^3