Ответ:
8 и 2 корня из 7
Объяснение:
1. По теореме о трех перпендикулярах, для прямой АС, лежащей на плоскости, наклонной РС и перпендикуляра РВ, получаем АС перпендикулярно РС. Значит, треугольник АРС - прямоугольный (Угол АСР=90). Следовательно, зная АС=6 и АР=10, по теореме Пифагора
катет РС квадрат=100-36. РС=8 см.
2. Треугольник СВР- прямоугольный по условию, так как РВ перпендикулярно ВС. Знаем РС=8 и ВС=6 - так как АВС- равнобедренный и АС=ВС. Снова по теореме Пифагора РВ квадрат= 64-36=28 РВ= 2 корня из 7.
Ответ:
.........................
Радиус окружности, проведенный в точку касания, перпендикулярен касательной.
Значит ОК⊥АВ, ОМ⊥АС и ОР⊥ВС.
Отрезки касательных, проведенных из одной точки, равны. Обозначим один отрезок гипотенузы х, а другой х + 14. Тогда
АК = АМ = х
ВК = ВР = х + 14
СМОР - квадрат, СМ = СР = 4.
Составим уравнение по теореме Пифагора:
АВ² = АС² + ВС²
(x + (x + 14))² = (x + 4)² + (4 + x + 14)²
(2x + 14)² = (x + 4)² + (x + 18)²
4x² + 56x + 196 = x² + 8x + 16 + x² + 36x + 324
2x² + 12x - 144 = 0
x² + 6x - 72 = 0
x = 6 или х = - 12 - не подходит по смыслу задачи.
АС = 6 + 4 = 10 см
ВС = 4 + 6 + 14 = 24 см
Sabc = 1/2 AC · BC = 1/2 · 10 · 24 = 120 см²
Т.к. О общая середина, то АО = ОВ и СО =ОД. Т.к. угол АОС и угол ВОД являются вертикальными > они равны. И далее по двум сторонам и углу между ними (АО = ОВ и СО = ОД И угол АОВ равен углу ВОД) Ч.т.д.