Ответ:
Объяснение:
ME || BC, тр-к АВС подобен тр-ку АМЕ по двум углам (<A-общий, <M=<B соответст.), МЕ/ВС=АМ/АВ, МЕ/44=7/11, МЕ=7*44/11=28
1) В основании - ромб АВСД с острым углом А 60 градусов. Треугольник АВД - равнобедр. (АВ=АД=6), значит углы АВД и ВДА равны по 1/2(180-60)=60 градусов. Получим равносторонний треугольник АВД со сторонами 6..Т.е. ВД=6
2) Угол наклона меньшей диагонали В1Д к основанию - это угол между наклонной В1д и ее проекцией ВД на плоскость основания. По условию он равен 45 градусов. Рассмотрим тр-к В1ВД: он прямоугольный (угол В равен 90 градусов) и равнобедренный (углы В1 и Д равны по 45 градусов), значит В1В=ВД=6.
3) V=Sh, где S- площадь ромба, а h - высота призмы, т.е В1В. Площадь ромба можно найти как произведение сторон АВ на АД и на синус угла 60 градусов между ними, т.е. 6*6*(корень из 3, деленный на 2), а высота В1В=6. Итак, V=108*(корень из 3)
S=ah,значит треуг. BDC равнобедерный,т.к BD=AB=DC,т.е проводим меридиану на ВС(он является основанием)(она и еще является высотой),т.е высота равна половине ВС(т.к половина Вс(ОС)=высоте из-за того что треугольник ОСD равнобедренный),h=31 ÷2=15,5 S=31×15,5=480,5
Если провести радиусы к вершинам треугольника, то получится равнобедренный треугольник со сторонами А=25,В=25,С=40.
Высота этого треугольника(пусть будет Н) и есть искомый радиус(перечерти отдельно треугольник и проведи высоту). Т.к. треугольник равнобедренный, то высота, будет являться медианой(делит сторону на 2 равные части), следует, что сторона СН=20. Мы имеем прямоугольный треугольник АВН. нам неизвестно ВН (т.е. искомый радиус). Найдем его по теореме Пифагора
25^2=x^2+20^2
<span>x=15</span>
Поскольку угол С1НВ = угол ВАС = А, то С1В = С1Н*tg(A) = 2*С1Н, а С1С = 3*С1Н, поэтому tg(B) = CC1/C1B = 3/2;
На рисунке ясно показан весь ход рассуждений и решения.